Personal tools

Wireless Communications Access Technologies

University of Chicago_062922A
[University of Chicago]

  

- Overview

Access methods are multiplexing techniques that provide communications services to multiple users in a single-bandwidth wired or wireless medium. Access methods allow many users to share these limited channels to provide the economy of scale necessary for a successful communications business.

Communications channels, whether they’re wireless spectrum segments or cable connections, are expensive. Communications services providers must engage multiple paid users over limited resources to make a profit. 

 

- 5 Basic Access or Multiplexing Methods

There are five basic access or multiplexing methods: frequency division multiple access (FDMA), time division multiple access (TDMA), code division multiple access (CDMA), orthogonal frequency division multiple access (OFDMA), and space-division multiple access (SDMA) .

  • Time-division multiple access (TDMA) provides multiuser access by chopping up the channel into sequential time slices. Each user of the channel takes turns to transmit and receive signals. In reality, only one person is actually using the channel at a specific moment. This is analogous to time-sharing on a large computer server.
  • Frequency-division multiple access (FDMA) provides multiuser access by separating the used frequencies. This is used in GSM to separate cells, which then use TDMA to separate users within the cell.
  • Code-division multiple access (CDMA) This uses a digital modulation called spread spectrum which spreads the voice data over a very wide channel in pseudorandom fashion using a user or cell specific pseudorandom code. The receiver undoes the randomization to collect the bits together and produce the original data. As the codes are pseudorandom and selected in such a way as to cause minimal interference to one another, multiple users can talk at the same time and multiple cells can share the same frequency. This causes an added signal noise forcing all users to use more power, which in exchange decreases cell range and battery life.
  • Orthogonal Frequency Division Multiple Access (OFDMA) uses bundling of multiple small frequency bands that are orthogonal to one another to provide for separation of users. The users are multiplexed in the frequency domain by allocating specific sub-bands to individual users. This is often enhanced by also performing TDMA and changing the allocation periodically so that different users get different sub-bands at different times.
  • Space-division multiple access (SDMA) uses physical separation methods that permit the sharing of wireless channels. For instance, a single channel may be used simultaneously if the users are spaced far enough from one another to avoid interference. Known as frequency reuse, the method is widely used in cellular radio systems. Cell sites are spaced from one another to minimize interference. In addition to spacing, directional antennas are used to avoid interference. Most cell sites use three antennas to create 120° sectors that allow frequency sharing. New technologies like smart antennas or adaptive arrays use dynamic beamforming to shrink signals into narrow beams that can be focused on specific users, excluding all others.


In theory, CDMA, TDMA and FDMA have exactly the same spectral efficiency but practically, each has its own challenges – power control in the case of CDMA, timing in the case of TDMA, and frequency generation/filtering in the case of FDMA.

 

 

[More to come ...]


Document Actions