Personal tools
You are here: Home Research Trends & Opportunities New Energy and Energy Resources of the Future Smart Grid Technology and Applications

Smart Grid Technology and Applications

[This Beijing dispatch center controls most of China’s ultrahigh-voltage lines and monitors renewable energy use - State Grid Corp. of China]

Smart Grid Technology


- What is the Smart Grid?

[]: "The grid," refers to the electric grid, a network of transmission lines, substations, transformers and more that deliver electricity from the power plant to your home or business. It’s what you plug into when you flip on your light switch or power up your computer. Our current electric grid was built in the 1890s and improved upon as technology advanced through each decade. Today, it consists of more than 9,200 electric generating units with more than 1 million megawatts of generating capacity connected to more than 300,000 miles of transmission lines. Although the electric grid is considered an engineering marvel, we are stretching its patchwork nature to its capacity. To move forward, we need a new kind of electric grid, one that is built from the bottom up to handle the groundswell of digital and computerized equipment and technology dependent on it - and one that can automate and manage the increasing complexity and needs of electricity in the 21st Century. 

[T&D World]: "A definition of a smart grid was first provided by the Energy Independence and Security Act of 2007.  The act enumerated 10 components with the underlying theme that digital processing and two-way communication with the resultingdata flow and information management are what make the grid smart.  The 10 components incorporate all elements of a power system including load, distribution, transmission and generation and are associated with the use of renewables, demand-side management, energy storage, peak energy shaving, and power conditioning.  The system is considered smart because of the communication technologies that enable self-healing through sensing capability with heavy monitoring, and a variety of computer controls that when combined provide automatic system responses for changes in load, generation and equipment that is out of service for whatever reason."


- What Makes a Grid “Smart?”

In short, the digital technology that allows for two-way communication between the utility and its customers, and the sensing along the transmission lines is what makes the grid smart. Like the Internet, the Smart Grid will consist of controls, computers, automation, and new technologies and equipment working together, but in this case, these technologies will work with the electrical grid to respond digitally to our quickly changing electric demand.


- The Smart Grid is Evolving

The smart grid will consist of millions of pieces and parts - controls, computers, power lines, and new technologies and equipment. It will take some time for all the technologies to be perfected, equipment installed, and systems tested before it comes fully on line. And it won’t happen all at once - the smart grid is evolving, piece by piece, over the next decade or so. Once mature, the smart grid will likely bring the same kind of transformation that the Internet has already brought to the way we live, work, play, and learn.


Smart Grid Applications


- What does a Smart Grid do?

The Smart Grid represents an unprecedented opportunity to move the energy industry into a new era of reliability, availability, and efficiency that will contribute to our economic and environmental health. During the transition period, it will be critical to carry out testing, technology improvements, consumer education, development of standards and regulations, and information sharing between projects to ensure that the benefits we envision from the Smart Grid become a reality. The benefits associated with the Smart Grid include:

  • More efficient transmission of electricity
  • Quicker restoration of electricity after power disturbances
  • Reduced operations and management costs for utilities, and ultimately lower power costs for consumers
  • Reduced peak demand, which will also help lower electricity rates
  • Increased integration of large-scale renewable energy systems
  • Better integration of customer-owner power generation systems, including renewable energy systems
  • Improved security

[More to come ...]

Document Actions